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Our Oklahoma case study is selected for the month of September
2003. This month had good WindSat data coverage, availability of
in situ soil moisture data sets, and wide-spread rain events which
were easily observed by WindSat.

A geostatistical analysis was performed on the Oklahoma Mesonet
in situ soil moisture station data and the Air Force Weather
Agency’s (AFWA) Agricultural Meteorology (AGRMET) soil
moisture model output data. The spatial variability information is
then used by a Kriging method to estimate soil moisture at
unsampled locations.  The spatial decorrelation length scale of soil
moisture is critical for the initialization in multi-dimensional
variational data assimilation research.  The decorrelation length of
soil moisture is seen to vary according to precipitation.  Pre-
precipitation regimes have a higher length than post-precipitation
regimes indicating that precipitation storm-scales drive soil
moisture spatial structures.  In-situ measurement systems used in
this study were found to be susceptible to quality control issues.
Under such conditions, techniques such as the Kriging method
described in this study can mitigate the quality control errors with
appropriate geostatistical information.  The effect of precipitation
events on the spatial geostatistical structure (decorrelation length
and sill) was also observed.

APPLICATIONS

4DDA DEEP SOIL
MOISTURE ESTIMATES

Direct remote sensing: Only Surface Soil Moisture
DA methods: Soil Moisture Profiles (up to 1m depths)

What makes this possible?
1. Diurnal soil moisture signal in land/atmos. physics
2. Use of temporal nature of the satellite data sets
3. Availability of good land surface models that can

characterize the diurnal effects as a function of soil
moisture

How long does it take to get results using the
4DDA method? Our results indicate that 7-14
days of integration time is necessary to reach 1 m
soil depths, however shallower depths are reached
in ~3 days of integration time or less. Some
aspects of the 4DDA method is more immediate
(for example, near the surface, new data impacts
would be nearly immediate).

How is the WindSat data used? WindSat is sensitive
to surface soil moisture variations. By matching
those variations to the atmospheric/land surface
model system, the soil moisture information in
deeper levels can be inferred through its impact on
the diurnal land/atmos. physics.

Our conclusions are:

1) Deep soil moisture retrievals using temporal
variational techniques are feasible.
a) 21-day integration experiments demonstrated

very strong adjoint sensitivities.
b) The adjoint soil moisture sensitivity to the

initial soil moisture conditions show a variety of
time scales according to soil depth and as a
function of soil type.

2) WindSat and future NPOESS surface soil
moisture retrievals can be extended to lower
depths using this technique.
a) The RAMDAS 4DVAR data assimilation

results were successful at creating the
components necessary for full 4DVAR
WindSat data assimilation capabilities for deep
soil moisture retrievals.

b) A full 21-day adjoint integration study was
successfully performed for a single point
observation to determine depth profile
feasibility issues.

3) Future Work
a) We recommend that future work focus on 14-

21 day experiments. For operational use,
2DVAR methods would be more
computationally efficient and flexible for use in
decentralized computational environments.

b) Observational radiative transfer model (RTM)
parameter sensitivity studies and radiometric
bias estimation using WindSat indicate that the
RTM bias is 5-8 K, which is higher than the
instrument noise. Thus microwave RTM
improvements and bias corrections are
needed. This should be done by
observationally retrieving microwave surface
emissivities to improve the RTM
parameterizations and related physics.

CONCLUSIONS

This work contributes to
several areas of interest:

1. More accurate probability
estimates of mobility and
trafficability

2. Improved hydrologic
forecasting capabilities

3. Improved NWP land
surface initialization

4. Better understanding
of atmospheric/land
interactions

5. More accurate
agricultural
assessments

6. Better in situ
soil moisture
quality control
procedures

6 GHz vs. 10 GHz

Frequency Polarization Ratio Perturbations (ΔPR) vs.
AGRMET Soil Moisture Perturbations (Δmv): (left) 6 GHz, (right) 10 GHz.

WindSat observational results show that the 6 GHz channels are
approximately 30% more sensitive to soil moisture than the 10 GHz
channels.

This result was obtained by comparing temporal perturbations of the
normalized polarization ratios (PR) to AGRMET model soil moisture
values for the Hollis, OK (HOLL) site location (one of the RFI-free
sites in OK). The AGRMET soil moisture temporal perturbation range
for HOLL was ~10% in absolute SM units, or ~25% of the expected
dynamic soil moisture range for the site. Larger rainfall events may
have different frequency-dependent soil moisture responses due to
soil saturation and surface flooding effects, etc.

We have developed a four–dimensional coupled
atmospheric/land data assimilation system using the
Regional Atmospheric Mesoscale Data Assimilation
System (RAMDAS) to retrieve deep soil moisture
profiles. Passive microwave data from CORIOLIS
WindSat is used as a surrogate for future microwave
sensors.

Current efforts are focused on the use of the system for
a case study occurring in September 2003. New adjoint
sensitivity results using this system are presented, and
implications for deep soil moisture retrievals using 4D
variational (4DVAR) data assimilation systems are
discussed. Using a variety of observational radiative
transfer studies and spatial correlation analysis
methods, we’ve also determined the statistical
behaviors of the soil moisture field and microwave
radiative transfer model performance that are
necessary for performing the 4DVAR soil moisture data
assimilation experiments. We conclude that additional
radiative transfer model debiasing will be beneficial;
however, polarization ratio results show a strong
temporal soil moisture signal from the observational
WindSat data sets that are able to be propagated by
the adjoint sensitivities to soil depths greater than 1 m.
Therefore deep soil moisture retrievals are shown to be
feasible. We expect that advanced microwave
emissivity analysis studies would provide more realistic
constraints on behaviors of the surface microwave
radiative transfer model parameters.

Adjoints are used within variational data assimilation techniques
to determine how to best adjust the model initial conditions to
accommodate the observational sensor data information.
Quantitatively a “cost function”, J, is used to measure the
distance that the model state is from the observational data. The
adjoints are used to compute the gradients of the cost function.
The gradient of the cost function is used to find the cost function
minimum, so that the probability of the model state is maximized
with respect to the observational data. Restated this is the most-
likely model state given the data, and is our retrieval objective.

In time-dependent variational techniques such as 4DVAR, the
cost function can be determined as a function of the temporally-
integrated adjoint sensitivities. In our case, the control variables
are the soil moisture at various soil depths. The adjoint
sensitivities are computed with respect to these control variables.
L (ti, t0)T, where L is the tangent linear operator of the forward
model, M (see Eq. (3)). This information is combined with the
model background and observational error covariance fields (B
and R, respectively) and the observational operator, H, to
determine the cost function gradient with respect to the model
state initial conditions, x (t0). The model background error
covariance is estimated relative to “truth”, as are the
observational error covariance fields which are estimated
instrument noise errors relative to “truth”. The observational
operator, H, transforms the model state information into the
observational state (e.g., soil moisture and surface temperature
model state information are transformed into passive microwave
brightness temperatures).

The cost function gradient (Eq. 1) is the key factor which
determines the new initial model state estimate. Thus, significant
sensitivity within the adjoint integration demonstrates deep soil
moisture retrieval feasibility given sufficient observational signal
strength from the data (which WindSat already has already
demonstrated for the surface soil moisture layers). For example,
if the data indicate the model is off by amount “a” at time t1, out of
N data points, how much does the cost function (through its
adjoint integration) indicate that the initial model conditions need
to be adjusted to match this condition? It is interesting to note that
the adjoints are integrated backwards in time. This is because we
are interested in the propagation of data analysis increments,
[H(xi) – yi] back to the initial model time, t0.

The single-observation adjoint sensitivities, LT, are shown in
Fig. 4. For this 21-day experiment, 13 additional WindSat data
observations were available for multi-temporal analysis. Thus,
the single-observation results are conservative indicators of
the ability of WindSat to detect deep soil moisture, as the
additional data points would increase the deep soil moisture
signal strength through repeated views of the scene. We
show the single observation adjoint results as they are simpler
to interpret. The adjoints are integrated backwards in time
from day 21 to the initial condition time,
t = 0. The results are normalized adjoint sensitivities,
determined by dividing the temporal adjoint sensitivity result
by the largest soil layer sensitivity. This means that at any one
time, one soil layer will have 100% relative adjoint sensitivity
strength relative to the other soil layers. What is most
important is the relative sensitivity of each layer. As we follow
the backwards integration, the leadership of the sensitivity
strength changes from the top soil layer to the deepest soil
layer (1.2 m – 0.6 m) (see Fig. 4). This transition occurs within
a period of 7-14 days. By the initial conditions, the bottom
three layers at 1.2 m, 0.6 m, and 0.3 m, contribute 100%,
65%, and 35% of the signal strength respectively. The surface
layers all contribute less than 20% at the model initial time.
This means that surface information from earlier time periods
are much more important to the determination of the deep soil
moisture values, as expected.
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WHAT ARE DEEP SOIL
MOISTURE

ADJOINT SENSITIVITIES?

Figure 4: Normalized adjoint sensitivity results for Hollis, OK for
the Sep. 2003 case study. Deep soil moisture at a depth of
approximately 1 m has the largest sensitivity in the integration
time period of 0-7 days. This indicates the strong deep soil
moisture sensitivity as a function of soil depth with time.
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Site Name Latitude Longitude Absolute Bias RMSE Correlation
Coefficient

KETC 34.529 -97.765 0.059 0.060 0.81

KING 35.881 -97.911 0.027 0.030 0.97

LAHO 36.384 -98.111 0.006 0.008 0.94

MARE 36.064 -97.213 0.047 0.048 0.86

MAYR 36.987 -99.011 0.012 0.013 0.80

MEDI 34.729 -98.567 0.060 0.061 0.94

MINC 35.272 -97.956 0.023 0.026 0.86

NOWA 36.744 -95.608 0.027 0.032 0.46

OKEM 35.432 -96.263 0.025 0.026 0.86

OKMU 35.581 -95.915 0.011 0.013 0.91

All Sites -- -- 0.030 0.032 0.84

SOIL MOISTURE
VERIFICATION

Figure 3: Spatial decorrelation lengths are higher for AGRMET model
output compared to the Oklahoma Mesonet soil moisture data through
the study period.

Figure 1: The distribution of AGRMET grid points and Oklahoma
Mesonet sites used in the geostatistical analysis. The data is described
in detail in Lakhankar et al. (2008).

Figure 2: The mean and variance of soil moisture measured at
Oklahoma Mesonet sites and AGRMET data for study area shows peaks
after precipitation events on day 244, 254, 264.

Table 1: This table shows the performance of Kriging in terms of
volumetric soil moisture at each jack-knifed Mesonet site for September
2003. The jack knifing procedure is outlined in Lakhankar et al. (2008).


